
SOFTWARE EVOLUTION AND THE FAULT PROCESS

Allen P. Nikora
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109-8099

Allen.P.Nikora@ jpl.nasa.gov

John C. Munson
Computer Science Department

University of Idaho
Moscow, ID 83844-1010
jmunson @cs.uidaho.edu

ABSTRACT

In developing a software system, we would like to
estimate the way in which the fault content changes
during its development, as well determine the locations
having the highest concentration of faults. In the phases
prior to test, however, there may be very little direct in-
formation regarding the number and location of faults.
This lack of direct information requires developing a
fault surrogate from which the number of faults and their
location can be estimated. We develop a fault surrogate

based on changes in the fault index, a synthetic measure
which has been successfully used as a fault surrogate in
previous work. We show that changes in the fault index
can be used to estimate the rates at which faults are in-
serted into a system between successive revisions. We
can then continuously monitor the total number of faults
inserted into a system, the residual fault content, and
identify those portions of a system requiring the applica-
tion of additional fault detection and removal resources.

1. INTRODUCTION

Over a number of years of study, we can now estab-
lish a distinct relationship between software faults and
certain aspects of software complexity. When a software
system consisting of many distinct software modules is
built for the first time, we have little or no direct infor-
mation as to the location of faults in the code. Some of
the modules will have far more faults in them then do
others. We do, however, now know that the number of
faults in a module is highly correlated with certain soft-
ware attributes that may be measured. This means that
we can measure the software on these specific attributes
and have some reasonable notion as to the degree to
which the modules are fault prone [Muns90, Muns96].

In the absence of information as to the specific lo-
cation of software faults, we have successfully used a
derived metric, the fault index measure, as a fault surro-
gate. That is, if the fault index of a module is large, then
it will likely have a large number of latent faults. If, on
the other hand, the fault index of a module is small, then
it will tend to have fewer faults. As the software system
evolves through a number of sequential builds, faults
will be identified and the code will be changed in an
attempt to eliminate the identified faults. The introduc-
tion of new code, however, is a fault prone process just
as was the initial code generation. Faults may well be
injected during this evolutionary process.

Code does not always change just to fix faults that
have been isolated in it. Some changes to code during its
evolution represent enhancements, design modifications
or changes in the code in response to continually evolv-
ing requirements. These incremental code enhancements
may also result in the introduction of still more faults.

Thus, as a system progresses through a series of builds,
the fault index of each program module that has been
altered must also change. We will see that the rate of
change in the system fault index will serve as a good
index of the rate of fault introduction.

The general notion of software test is to make the
rate of fault removal exceed the rate of fault introduc-
tion. In most cases, this is probably true [Muns97].
Some changes are rather more heroic than others. Dur-
ing these more substantive change cycles, it is quite pos-
sible that the actual number of faults in the system will
rise. We would be very mistaken, then, to assume that
software test will monotonically reduce the number of
faults in a system. This will only be the case when the
rate of fault removal exceeds the rate of fault introduc-
tion. The rate of fault removal is relatively easy to
measure. The rate of fault introduction is much more
tenuous. This fault introduction process is directly re-
lated to two measures that we can take on code as it
evolves, fault deltas and net fault change (NFC).

In this investigation we establish a methodology
whereby code can be measured from one build to the
next, a measurement baseline. We use this measurement
baseline to develop an assessment of the rate of change
to a system as measured by our fault. From this change
process we are then able to derive a direct measure of the
rate of fault introduction based on changes in the soft-
ware from one build to the next. Finally we examine
data from an actual system on which faults may be
traced to specific build increments to assess the predicted
rate of fault introduction with the actual.

A major objective of this study is to identify a com-
plete software system on which every version of every
module has been archived together with the faults that
have been recorded against the system as it evolved. For
our purposes, the Cassini Orbiter Command and Data
Subsystem at JPL met all of our objectives. On the first
build of this system there were approximately 96K
source lines of code in approximately 750 program mod-
ules. On the last build there were approximately 110K
lines of source code in approximately 800 program mod-
ules. As the system progressed from the first to the last
build there were a total of 45,200 different versions of
these modules. On the average, then, each module pro-
gressed through an average of 60 evolutionary steps or
versions. For the purposes of this study, the Ada pro-
gram module is a procedure or function. it is the small-
est unit of the Ada language structure that may be meas-
ured. A number of modules present in the first build of
the system were removed on subsequent builds. Simi-
larly, a number of modules were added.

The Cassini CDS does not represent an extraordi-
nary software system. It is quite typical of the amount of
change activity that will occur in the development of a
system on the order of 100 KLOC. It is a non-trivial
measurement problem to track the system as it evolves.
Again, there are two different sets of measurement ac-
tivities that must occur at once. We are interested the
changes in the source code and we are interested in the
fault reports that are being filed against each module.

2. A MEASUREMENT BASELINE

The measurement of an evolving software system
through the shifting sands of time is not an easy task.
Perhaps one of the most difficult issues relates to the
establishment of a baseline against which the evolving
systems may be compared. This problem is very similar
to that encountered by the surveying profession. If we
were to buy a piece of property, there are certain physi-
cal attributes that we would like to know about that
property. Among these properties is the topology of the
site. To establish the topological characteristics of the
land, we will have to seek out a benchmark. This
benchmark represents an arbitrary point somewhere on
the subject property. The distance and the elevation of
every other point on the property may then be estab-
lished in relation to the measurement baseline. Interest-
ingly enough, we can pick any point on the property,
establish a new baseline, and get exactly the same topol-
ogy for the property. The property does not change.
Only our perspective changes.

When measuring software evolution, we need to
establish a measurement baseline for this same purpose
[Niko97, Muns96a]. We need a fixed point against
which all others can be compared. Our measurement
baseline also needs to maintain the property that, when

another point is chosen, the exact same picture of soft-
ware evolution emerges, only the perspective changes.
The individual points involved in measuring software
evolution are individual builds of the system.

For each raw metric in the baseline build, we may
compute a mean and a standard deviation. Denote the
vector of mean values for the baseline build as Bx and
the vector of standard deviations as Bs . The standard-
ized baseline metric values for any module j in an arbi-
trary build i, then, may be derived from raw metric val-
ues as

B

j

B

j

iB

jiB

j s

xw
z

−
=

,

,

Standardizing the raw metrics makes them more
tractable. It now permits the comparison of metric val-
ues from one build to the next. From a software engi-
neering perspective, there are simply too many metrics
collected on each module over many builds. We need to
reduce the dimensionality of the problem. We have suc-
cessfully used principal components analysis for reduc-
ing the dimensionality of the problem [Muns90a,
Khos92]. The principal components technique will
reduce a set of highly correlated metrics to a much
smaller set of uncorrelated or orthogonal measures. One
of the products of the principal components technique is
an orthogonal transformation matrix T that will send the
standardized scores (the matrix z) onto a reduced set of
domain scores thusly, zTd = .

In the same manner as the baseline means and stan-
dard deviations were used to transform the raw metric of
any build relative to a baseline build, the transformation
matrix BT derived from the baseline build will be used
in subsequent builds to transform standardized metric
values obtained from that build to the reduced set of do-
main metrics as follows: BiBiB Tzd ,, = , where iB ,z are
the standardized metric values from build i baselined on
build B .

Another artifact of the principal components analy-
sis is the set of eigenvalues that are generated for each of
the new principal components. Associated with each of
the new measurement domains is an eigenvalue, λ .
These eigenvalues are large or small varying directly
with the proportion of variance explained by each prin-
cipal component. We have successfully exploited these
eigenvalues to create the fault index, ρ , that is the

weighted sum of the domain metrics to wit:

∑
=

+=
m

j
jji d

1

1050 λρ , where m is the dimensionality of

the reduced metric set [Muns90a].
As was the case for the standardized metrics and the

domain metrics, the fault index may be baselined as well,
using the eigenvalues and the baselined domain values:

∑
=

=
m

j

B

j

B

j

B

i d
1

λρ

If the raw metrics that are used to construct the fault
index are carefully chosen for their relationship to soft-
ware faults then the fault index will vary in exactly the
same manner as the faults [Muns95]. The fault index is
a very reliable fault surrogate. Whereas we cannot
measure the faults in a program directly we can measure
the fault index of the program modules that contain the
faults. Those modules having a large fault index will
ultimately be found to be those with the largest number
of faults [Muns92].

3. SOFTWARE EVOLUTION
A software system consists of one or more software

modules. As the system grows and modifications are
made, the code is recompiled and a new version, or
build, is created. Each build is constructed from a set of
software modules. The new version may contain some
of the same modules as the previous version, some en-
tirely new modules and it may even omit some modules
that were present in an earlier version. Of the modules
that are common to both the old and new version, some
may have undergone modification since the last build.
When evaluating the change that occurs to the system
between any two builds (software evolution), we are
interested in three sets of modules. The first set, CM , is
the set of modules present in both builds of the system.
These modules may have changed since the earlier ver-
sion but were not removed. The second set, AM , is the
set of modules that were in the early build and were re-
moved prior to the later build. The final set, BM , is the
set of modules that have been added to the system since
the earlier build.

The fault index of the system iR at build i, the early
build, is given by

∑∑
∈∈

+=
ac Ma

i

a
Mc

i

c

iR ρρ .

Similarly, the fault index of the system jR at build j, the
later build is given by

∑∑
∈∈

+=
bc Mb

j

b
Mc

j

c

jR ρρ .

The later system build is said to be more fault prone if

ij RR > .

As a system evolves through a series of builds, its
fault burden will change. This burden may be estimated
by a set of software metrics. One simple assessment of
the size of a software system is the number of lines of
code per module. However, using only one metric may
neglect information about the other complexity attributes
of the system, such as control flow and temporal com-

plexity. By comparing successive builds on their domain
metrics it is possible to see how these builds either in-
crease or decrease based on particular attribute domains.
Using the fault index, the overall system fault burden can
be monitored as the system evolves.

Regardless of which metric is chosen, the goal is the
same. We wish to assess how the system has changed,
over time, with respect to that particular measurement.
The concept of a code delta provides this information. A
code delta is, as the name implies, the difference be-
tween two builds as to the relative complexity metric.

The change in the fault in a single module between
two builds may be measured in one of two distinct ways.
First, we may simply compute the simple difference in
the module fault index between build i and build j. We
have called this value the fault delta for the module m, or

i

m

j

m

ji

m ρρδ −=, . A limitation of measuring fault deltas is
that it doesn’t give an indicator as to how much change
the system has undergone. If, between builds, several
software modules are removed and are replaced by mod-
ules of roughly equivalent complexity, the fault delta for
the system will be close to zero. The overall complexity
of the system, based on the metric used to compute del-
tas, will not have changed much. However, the reliabil-
ity of the system could have been severely affected by
the replacing old modules with new ones. What we need
is a measure to accompany fault delta that indicates how
much change has occurred.

The absolute value of the fault delta is a measure of
code churn. In the case of code churn, what is important
is the absolute measure of the nature that code has been
modified. From the standpoint of fault insertion, re-
moving a lot of code is probably as catastrophic as add-
ing a bunch. The new measure of net fault change
(NFC), χ , for module m is simply

mJ

i

m

ji

m

ji

m ρρδχ −== ,,

The total change of the system is the sum of the
fault delta’s for a system between two builds i and j is
given by

∑∑ ∑
∈∈ ∈

+−=∆
bc a Mb

j

b
Mc Ma

i

a

ji

c

ji ρρδ ,, .

Similarly, the NFC of the same system over the same
builds is

∑∑ ∑
∈∈ ∈

++=∇
bc a Mb

j

b
Mc Ma

i

a

ji

c

ji ρρχ ,, .

With a suitable baseline in place, and the module
sets defined above, it is now possible to measure soft-
ware evolution across a full spectrum of software met-
rics. We can do this first by comparing average metric
values for the different builds. Secondly, we can meas-
ure the increase or decrease in system complexity as
measured by a selected metric, fault delta, or we can

measure the total amount of change the system has un-
dergone between builds, net fault change.

4. OBTAINING AVERAGE BUILD
VALUES

One synthetic software measure, fault index, has
clearly been established as a successful surrogate meas-
ure of software faults [Muns90a]. It seems only reason-
able that we should use it as the measure against which
we compare different builds. Since the fault index is a
composite measure based on the raw measurements, it
incorporates the information represented by LOC, V(g),

1η , 2η , and all the other raw metrics of interest. The
fault index is a single value that is representative of the
complexity of the system which incorporates all of the
software attributes we have measured (e.g. size, control
flow, style, data structures, etc.).

By definition, the average fault index, ρ , of the

baseline system will be

50
1

1

== ∑
=

BN

i

B

iB

B

N
ρρ ,

where BN is the cardinality of the set of modules on
build B, the baseline build. The fault index for the base-
line build is calculated from standardized values using
the mean and standard deviation from the baseline met-
rics. The fault indices are then scaled to have a mean of
50 and a standard deviation of 10. For that reason, the
average fault index for the baseline system will always
be a fixed point. Subsequent builds are standardized
using the means and standard deviations of the metrics
gathered from the baseline system to allow comparisons.
The average fault index for subsequent builds is given by

∑
=

=
kN

i

kB

ik

k

N 1

,1
ρρ ,

where kN is the cardinality of the set of program mod-

ules in the thk build and kB

i

,ρ is the baselined fault in-

dex for the thi module of that set.
As the code is modified over time, faults will be

found and fixed. However, new faults will be introduced
into the code as a result of the change. In fact, this fault
introduction process is directly proportional to change in
the program modules from one version to the next. As a
module is changed from one build to the next in response
to evolving requirements changes and fault reports, its
measurable software attributes will also change. Gener-
ally, the net effect of a change is that complexity will
increase. Only rarely will its complexity decrease.

5. DEFINITION OF A FAULT

Unfortunately there is no particular definition of
precisely what a software fault is. This makes it difficult

to develop meaningful associative models between faults
and metrics. In calibrating our model, we would like to
know how to count faults in an accurate and repeatable
manner. In measuring the evolution of the system to talk
about rates of fault introduction and removal, we meas-
ure in units to the way that the system changes over time.
Changes to the system are visible at the module level,
and we attempt to measure at that level of granularity.
Since the measurements of system structure are collected
at the module level (by module we mean procedures and
functions), we would like information about faults at the
same granularity. We would also like to know if there
are quantities that are related to fault counts that can be
used to make our calibration task easier.

Following the second definition of fault in [IEEE83,
IEEE88], we consider a fault to be a structural imper-
fection in a software system that may lead to the sys-
tem’s eventually failing. In other words, it is a physical
characteristic of the system of which the type and ex-
tent may be measured using the same ideas used to
measure the properties of more traditional physical sys-
tems. Faults are introduced into a system by people
making errors in their tasks - these errors may be errors
of commission or errors of omission. In order to count
faults, we needed to develop a method of identification
that is repeatable, consistent, and identifies faults at the
same level of granularity as our structural measurements.
Faults may be local – for instance, a system might con-
tain an implementation fault affecting only one module
in which the programmer incorrectly initializes a vari-
able local to the routine. Faults may also span multiple
modules - for instance, each module containing an in-
clude file with a particular fault would have that fault. In
identifying and counting faults, we must deal with both
types of faults. Details of the fault counting and identifi-
cation rules developed for this study are given in
[Niko97a, Niko98]

In analyzing the flight software for the CASSINI
project the fault data and the source code change data
were available from two different systems. The problem
reporting information was obtained from the JPL institu-
tional problem reporting system. Failures were recorded
in this system starting at subsystem-level integration, and
continuing through spacecraft integration and test. Fail-
ure reports typically contain descriptions of the failure at
varying levels of detail, as well as descriptions of what
was done to correct the fault(s) that caused the failure.
Detailed information regarding the underlying faults
(e.g., where were the code changes made in each af-
fected module) is generally unavailable from the prob-
lem reporting system.

The entire source code evolution history could be
obtained directly from the Software Configuration Con-
trol System (SCCS) files for all versions of the flight
software. The way in which SCCS was used in this de-
velopment effort makes it possible to track changes to

the system at a module level in that each SCCS file
stores the baseline version of that file (which may con-
tain one or more modules) as well as the changes re-
quired to produce each subsequent increment (SCCS
delta) of that file. When a module was created, or
changed in response to a failure report or engineering
change request, the file in which the module is contained
was checked into SCCS as a new delta. This allowed us
to track changes to the system at the module level as it
evolved over time. For approximately 10% of the failure
reports, we were able to identify the source file incre-
ment in which the fault(s) associated with a particular
failure report were repaired. This information was avail-
able either in the comments inserted by the developer
into the SCCS file as part of the check-in process, or as
part of the set of comments at the beginning of a module
that track its development history.

Using the information described above, we per-
formed the following steps to identify faults. First, for
each problem report, we searched all of the SCCS files
to identify all modules and the increment(s) of each
module for which the software was changed in response
to the problem report. Second, for each increment of
each module identified in the previous step, we assumed
as a starting point that all differences between the incre-
ment in which repairs are implemented and the previous
increment are due solely to fault repair. Note that this is
not necessarily a valid assumption - developers may be
making functional enhancements to the system in the
same increment that fault repairs are being made. Care-
ful analysis of failure reports for which there was suffi-
ciently detailed descriptive information served to sepa-
rate areas of fault repair from other changes. However,
the level of detail required to perform this analysis was
not consistently available. Third, we used a differential
comparator (e.g., Unix diff) to obtain the differences
between the increment(s) in which the fault(s) were re-
paired, and the immediately preceding increment(s).
The results indicated the areas to be searched for faults.

After completing the last step, we still had to iden-
tify and count the faults - the results of the differential
comparison cannot simply be counted up to give a total
number of faults. In order to do this, we developed a
taxonomy for identifying and counting faults [Niko98].
This taxonomy differs from others in that it does not
seek to identify the root cause of the fault. Rather, it is
based on the types of changes made to the software to
repair the faults associated with failure reports - in other
words, it constitutes an operational definition of a fault.
Although identifying the root causes of faults is impor-
tant in improving the development process [Chil92,
IEEE93], it is first necessary to identify the faults. We do
not claim that this is the only way to identify and count
faults, nor do we claim that this taxonomy is complete.
However, we found that this taxonomy allowed us to
successfully identify faults in the software used in the

study in a consistent manner at the appropriate level of
granularity.

6. THE RELATIONSHIP BETWEEN
FAULTS AND CODE CHANGES

Having established a theoretical relationship be-
tween software faults and code changes, it is now of in-
terest to validate this model empirically. This measure-
ment occurred on two simultaneous fronts. First, all of
the versions of all of the source code modules were
measured. From these measurements, NFC and fault
deltas were obtained for every version of every module.
The failure reports were sampled to lead to specific
faults in the code. These faults were classified accord-
ing to the above taxonomy manually on a case by case
basis. Then we were able to build a regression model
relating the code measures to the code faults.

The Ada source code modules for all versions of
each of these modules were systematically reconstructed
from the SCCS code deltas. Each of these module ver-
sions was then measured by the UX-Metric analysis tool
for Ada [SETL93]. Not all metrics provided by this tool
were used in this study. Only a subset of these actually
provide distinct sources of variation [Khos90]. The spe-
cific metrics used in this study are shown in Table 1.

Metrics Definition

1η Count of unique operators [Hal77]

2η Count of unique operands

1N Count of total operators

2N Count of total operands

P/R
Purity ratio: ratio of Halstead’s N

)
 to total program

vocabulary
V(g) McCabe’s cyclomatic complexity

Depth Maximum nesting level of program blocks
AveDepth Average nesting level of program blocks

LOC Number of lines of code
Blk Number of blank lines
Cmt Count of comments

CmtWds Total words used in all comments
Stmts Count of executable statements
LSS Number of logical source statements
PSS Number of physical source statements

NonEx Number of non-executable statements
AveSpan Average number of lines of code between references

to each variable
Vl Average variable name length

Table 1. Software Metric Definitions

To establish a baseline system, all of the metric data
for the module versions that were members of the first
build of CDS were then analyzed by our PCA-FI tool.
This tool is designed to compute fault indices either from
a baseline system or from a system being compared to

the baseline system. In that the first build of the Cassini
CDS system was selected to be the baseline system, the
PCA-FI tool performed a principal components analysis
on these data with an orthogonal varimax rotation. The
objective of this phase of the analysis is to use the prin-
cipal components technique to reduce the dimensionality
of the metric set. As may been seen in Table 2, there are
four principal components for the 18 metrics shown in
Table 1. For convenience, we have chosen to name
these principal components as Size, Structure, Style and
Nesting. From the last row in Table 2 we can see that
the new reduced set of orthogonal components of the
original 18 metrics account for approximately 85% of
the variation in the original metric set.

Metric Size Structure Style Nesting
Stmts 0.968 0.022 -0.079 0.021
LSS 0.961 0.025 -0.080 0.004

2N 0.926 0.016 0.086 0.086

1N 0.934 0.016 0.074 0.077

2η 0.884 0.012 -0.244 0.043

AveSpan 0.852 0.032 0.031 -0.082
V(g) 0.843 0.032 -0.094 -0.114

1η 0.635 -0.055 -0.522 -0.136

Depth 0.617 -0.022 -0.337 -0.379
LOC -0.027 0.979 0.136 0.015
Cmt -0.046 0.970 0.108 0.004
PSS -0.043 0.961 0.149 0.019

CmtWds 0.033 0.931 0.058 -0.010
NonEx -0.053 0.928 0.076 -0.009

Blk 0.263 0.898 0.048 0.005
P/R -0.148 -0.198 -0.878 0.052
Vl 0.372 -0.232 -0.752 0.010

AveDepth -0.000 -0.009 0.041 -0.938
% Variance 37.956 30.315 10.454 6.009

Table 2. Principal Components of Software Metrics

As is typical in the principal components analysis of
metric data, the Size domain dominates the analysis. It
alone accounts for approximately 38% of the total varia-
tion in the original metric set. Not surprisingly, this do-
main contains the metrics of total statement count
(Stmts), logical source statements (LSS), the Halstead
lexical metric primitives of operator and operand count,
but it also contains cyclomatic complexity (V(g)). In that
we regularly find cyclomatic complexity in this domain
we are forced to conclude that it is only a simple meas-
ure of size in the same manner as statement count. The
Structure domain contain those metrics relating to the
physical structure of the program such as non-executable
statements (NonEx) and the program block count (Blk).
The Style domain contains measures of attribute that are
directly under a programmer’s control such as variable
length (Vl) and purity ratio (P/R). The Nesting domain
consist of the single metric that is a measure of the aver-
age depth of nesting of program modules (AveDepth).

In order to transform the raw metrics for each mod-
ule version into their corresponding fault indices, the
means and the standard deviations must be computed.
These values will be used to transform all raw metric
values for all versions of all modules to their baselined z
score values. The transformation matrix will then map
the metric z score values onto their orthogonal equiva-
lents to obtain the orthogonal domain metric values used
in the computation of the fault index. With this
information, we can obtain baselined fault index values
for any version of any module relative to the baseline
build. As an aside, it is not necessary that the baseline
build be the initial build. As a typical system progresses
through hundreds of builds in the course of its life, it is
worth reestablishing a baseline closer to the current sys-
tem. In any event, these baseline data are saved by the
PCA-FI tool for use in later computation of metric val-
ues. Whenever the tool is invoked referencing the base-
line data it will automatically use these data to transform
the raw metric values given to it.
 Once the baselined fault index data have been as-
sembled for all versions of all modules, it is then possi-
ble to examine some trends that have occurred during the
evolution of the system. For example, in Figure 1 the
fault index of the evolving CDS system is shown across
one of its five major builds. To compute these changing
fault index values, every development increment within
that build was identified. Then, for each increment, the
baselined fault indices of the modules in that increment
were computed. The next four increments, not shown
here, have evolutionary patterns similar to that shown in
Figure 1. It seems to be that the average fault index of
most systems is a monotonically increasing function.

-200.00

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

0 50 100 150 200 250 300

Figure 1. Change in the Fault Index for One Version
of CDS Flight Software

Note in Figure 1 that not all increments within a
build represent the same increase in the fault index.
Nearly one third of the total change in this version takes
place within the first 10% of the development incre-
ments. From our understanding of the relationship be-
tween the fault index and injected faults, we would ex-
pect that the magnitude of change within the first 30 in-
crements would indicate that a large number of faults

Cumulative
NFC

Cumulative
fault delta

would have been injected as a result of this activity. It is
also interesting to note that the final fault index of this
particular version is rather close to the initial fault index,
although it is quite clear from the measured activity that
a significant amount of change has occurred.

Not all program modules received the same degree
of modification as the system evolved. Some modules
changed relatively little. Figure 2 shows the net fault
change and fault delta values for a module that was rela-
tively stable over its change history. There were only
four relatively minor changes to this module. A more
typical change history is shown for another module in
Figure 3. The total net fault change for this module is
approximately 38. It is interesting to note that the fault
delta for this module is close to zero. The fault index of
the module at the last version is very close to its original
value. This figure clearly illustrates the conceptual dif-
ferences between the two measure of net fault change
and fault delta.

0.00
0.20

0.40
0.60
0.80
1.00

1.20
1.40
1.60
1.80

2.00

v1
.1

v3
.7

v3
.15

v3
.23 v4

.5
v5

.8
v5

.16
v5

.24
v5

.32 v7
.2

v7
.10

v7
.18

v7
.26

Figure 2. Change History for Stable Module

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

v3
.10

v3
.22

v3
.34 v4

.5
v5

.8
v5

.20
v5

.32
v5

.44
v5

.56
v5

.68
v5

.78 v6
.3

v6
.15

v7
.10

Figure 3. Typical Module Change History

Figure 4 shows a module at the extreme end of
change history. This module has a total net fault change
value of close to 140. Also, its final fault delta value is
about 30, indicating that its fault index has also increased
significantly as it evolved. Among the three modules
whose change history is illustrated by Figures 2, 3, and
4, the latter module is the one that we focus our attention
on the most. It is the one most likely to have had signifi-
cant numbers of faults introduced into it throughout its
dramatic life.

Now let us turn our attention to the fault identifica-
tion process. Over 600 failure reports were written

against the CDS flight software during developmental
testing and system integration. Failure reports contain a
description of how the system’s behavior deviated from
expectations, the date on which the failure was observed,
and a description of the corrective action that was taken.

In relating the number of faults inserted in an incre-
ment to measures of a module’s structural change, we
had only a small number of observations with which to
work. There were three difficulties that had to be dealt
with. First, recall that for only about 10% of the failure
reports were we able to identify the module(s) that had
been changed, and in which increment those changes
were made. Although the development practices used on
this project included the placement of comments in the
source code to identify repair activities resulting from
each problem report, this requirement was not consis-
tently enforced. Second, once a fault had been identi-
fied, it was necessary to trace it back to the increment in
which it first occurred. For some source files, there were
over 100 increments that had to be manually searched.
Since the SCCS files for each delivered version were
available, it was possible to trace most faults back to
their point of origin. As previously noted, the principal
difficulty was the sheer volume of material that had to be
examined – this was one of the factors restricting the
number of observations that could be obtained. Third,
there were numerous instances in which the UX-Metric
analyzer that was used to obtain the raw structural meas-
urements would not measure a particular module. The
net result was that of the over 100 faults that were ini-
tially identified, there were only 35 observations in
which a fault could be associated with a particular in-
crement of a module, and with that increment’s measures
of fault delta and net fault change.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

v3
.1

v3
.11

v3
.21 v4

.5
v5

.8
v5

.18
v5

.28
v5

.38
v5

.48
v5

.58
v5

.68 v7
.2

Figure 4. Change History for Frequently Changed
Module

For each of the 35 modules for which there was vi-
able fault data, there were three data points. First, we
had the number of injected faults for that module that
were the direct result of changes that had occurred on
that module between the current version that contained
the faults and the previous version that did not. Second,
we had fault delta values for each of these modules from

Cumulative
NCF

Cumulative
NCF

Cumulative
fault delta

Cumulative
fault delta

Cumulative
NCF

Cumulative
fault delta

the current to the previous version. Finally, we had net
fault change values derived from the fault deltas.

Linear regression models were computed for net
fault change and fault deltas with actual code faults as
the dependent variable in both cases. Both models were
build without constant terms in that we surmise that if no
changes were made to a module, then no new faults
could be introduced. The results of the regression be-
tween faults and fault deltas were not at all surprising.
The squared multiple R for this model was 0.001, about
as close to zero as you can get. This result is directly
attributable to the non-linearity of the data. Change
comes in two flavors. Change may increase the com-
plexity of a module. Change may decrease the com-
plexity of a model. Faults, on the other hand are not
related to the direction of the change but to its intensity.
Removing masses of code from a module is just as likely
to introduce faults and adding code to it.

The regression model between net fault change and
faults is dramatically different. The regression ANOVA
for this model are shown in Table 3. Whereas fault del-
tas do not show a linear relationship with faults, net fault
change certainly does. The actual regression model is
given in Table 4. In Table 5 the regressions statistics
have been reported. Of particular interest is the Squared
Multiple R term, having a value of 0.653. This means,
roughly, that the regression model will account for more
than 65% of the variation in the faults of the observed
modules based on the values of net fault change.

Source Sum-of-
Squares

DF Mean-
Square

F-Ratio P

Regression 331.879 1 331.879 62.996 0.000
Residual 179.121 34 10.673 5.268

Table 3. Regression Analysis of Variance

Effect Coefficient Std Err t P(2-Tail)
NFC 0.576 0.073 7.937 0.000

Table 4. Regression Model

N Multiple R
Squared multiple

R
Standard error of

estimate
35 0.806 0.649 2.296

Table 5. Regression Statistics

Of course, it may be the case that both the amount
of change and the direction in which the change oc-
curred. The linear regression through the origin shown
in Tables 6, 7, and 8 below illustrates this model.

Source Sum-of-
Squares

DF Mean-
Square

F-Ratio P

Regression 367.247 2 183.623 42.153 0.000
Residual 143.753 33 4.356

Table 6. Regression Analysis of Variance

Effect Coefficient Std Err t P(2-Tail)
NFC 0.647 0.071 9.172 0.000
Delta 0.201 0.071 2.849 0.002

Table 7. Regression Model

N Multiple R
Squared multiple

R
Standard error of

estimate
35 .848 .719 2.087

Table 8. Regression Statistics

We see that the model incorporating fault delta as well as
net fault change performs significantly better than the
model incorporating net fault change alone, as measured
by Squared Multiple R and Mean Sum of Squares.

We determined whether the linear regression model
which uses net fault change alone is an adequate predic-
tor at a particular significance level when compared to
the model using both net fault change and fault delta. We
used the R2-adequate test [MacD97, Net83] to examine
the linear regression models through the origin and de-
termine whether the models that depend only on struc-
tural measures are an adequate predictor. A subset of
predictor variables is said to be R2-adequate at signifi-
cance level α if:

()()dRR knfullsub ,
22 111 +−−> , where

• R2
sub is the R2 value achieved with the subset of

predictors
• R2

full is the R2 value achieved with the full set of
predictors

• dn,k = (kFk,n-k-1)/n-k-1, where
• k = number of predictor variables in the

model
• n = number of observations
• F = F statistic for significance α for n,k de-

grees of freedom.
Table 9 below show values of R2, k, degrees of freedom,
Fk,n-k-1, dn,k, and R2

sub for all four linear regression models
through the origin. The number of observations, n, is 35,
and we specify a value of α=.05.

We see in Table 9 that the value of Multiple Squared
R for the regression using only net fault change is 0.649,
and the 5% significance threshold for the net fault
change and fault delta regression model is 0.661. This
means that the regression model using only NFC is not
R2 adequate when compared to the model using both net
fault change and fault delta as predictors. The amount of
change occurring between subsequent revisions and the
direction of that change both appear to be important in
determining the number of faults inserted into a system.

Lin. Regres-
sions

Through
Origin

R2 DF k Fk,n-k-1 for
signifi-
cance αα

d(n,k) Thresh-
old for
signifi-
cance αα

NFC only 0.649 34 1 4.139 0.125 -----
NFC, Fault

Delta
0.719 33 2 3.295 0.206 0.661

Table 9. Values of R2, DOF, k, Fk,n-k-1, and dn,k for R2-
adequate Test

Finally, we examined the predicted residuals for the
linear regression models described above. Table 10 be-

low shows the results of the Wilcoxon Signed Ranks
test, as applied to the predictions for the excluded obser-
vations and the number of faults observed for each of the
two linear regression models through the origin. For
these models, about 2/3 of the estimates tend to be less
than the number of faults observed.

Plots of the predicted residuals against the actual
number of observed faults for each of the linear regres-
sion models through the origin are shown in Figures 5
and 6 below. The results of the Wilcoxon signed ranks
tests, as well as Figures 5 and 6, indicate that the predic-
tive accuracy of the regression models might be im-
proved if syntactic analyzers capable of measuring addi-
tional aspects of a software system’s structure were
available. Recall, for instance, that we did not measure
any of the real-time aspects of the system. Analyzers
capable of measuring changes in variable definition and
usage as well changes to the sequencing of blocks might
also provide more accurate measurements.

Sample
Pair

N Mean
Rank

Sum
of

Ranks

Test
Statis-

tic
Z

Asymp-
totic

Signifi-
cance

(2-tailed)
Observed
Faults;
NFC only
fault est.

Neg.
Pos.
Ties
Total

25a

10b

0c

35

17.52
19.20

438.00
192.00

-2.015d .044

Observed
Faults;
NFC and
Fault
Delta est.

Neg.
Pos.
Ties
Total

24a

11b

0c

35

16.92
20.36

406.00
224.00

-1.491d .136

a. Observed Faults > Regression model predictions
b. Observed Faults < Regression model predictions
c. Observed Faults = Regression model predictions
d. Based on positive ranks

Table 10. Wilcoxon Signed Ranks Test for Linear
Regressions Through the Origin

Predicted Residuals vs. Observed Faults

Faults = b1*NFC

Number of observed faults - versions 2.0, 2.1a, and 2.1b

121086420

P
re

di
ct

ed
 R

es
id

ua
ls

8

6

4

2

0

-2

-4

-6

Figure 5. Predicted Residuals vs. Number of Ob-
served Faults for Linear Regression Using NFC

Predicted Residuals vs. Observed Faults

Faults = b1*NFC + b2*Fault Delta

Number of observed faults - versions 2.0, 2.1a, and 2.1b

121086420

P
re

di
ct

ed
 R

es
id

ua
ls

8

6

4

2

0

-2

-4

-6

Figure 6. Predicted Residuals vs. Number of Ob-
served Faults for Linear Regression with NFC and

Fault Delta

7. SUMMARY

There is a distinct and a strong relationship between
software faults and measurable software attributes. This
is in itself not a new result or observation. The most
interesting result of this endeavor is that we also found a
strong association between the fault introduction process
over the evolutionary history of a software system and
the degree of change taking place in each of the program
modules. We also found that the direction of the change
was significant in determining the number of faults in-
serted. Some changes will have the potential of intro-
ducing very few faults while others may have a serious
impact on the number of latent faults. Different numbers
of faults may be inserted, depending upon whether code
is being added to or removed from the system.

In order for the measurement process to be meaning-
ful, fault data must be very carefully collected. In this
study, the data were extracted ex post facto as a very
labor intensive effort. Since fault data cannot be col-
lected with the same degree of automation as much of
the data on software metrics being gathered by develop-
ment organizations, material changes in the software
development and software maintenance processes must
be made to capture these fault data. Among other things,
a well defined fault standard and fault taxonomy must be
developed and maintained as part of the software devel-
opment process. Further, all designers and coders should
be trained in its use. A viable standard is one that may
be used to classify any fault unambiguously. A viable
fault recording process is one in which any one person
will classify a fault exactly the same as any other person.

Finally, the whole notion of measuring the fault in-
troduction process is its ultimate value as a measure of
software process. The software engineering literature is
replete with examples of how software process im-
provement can be achieved through the use of some new
software development technique. What is almost absent
from the same literature is a controlled study to validate

the fact that the new process is meaningful. The tech-
niques developed in this study can be implemented in a
development organization to provide a consistent method
of measuring fault content and structural evolution
across multiple projects over time. We are working with
software development efforts at JPL to address the prac-
tical aspects of inserting these measurement techniques
into production software development environments.
The initial estimates of fault insertion rates can serve as a
baseline against which future projects can be compared
to determine whether progress is being made in reducing
the fault insertion rate, and to identify those development
techniques that seem to provide the greatest reduction.

ACKNOWLEDGMENTS

The research described in this paper was carried out
by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aero-
nautics and Space Administration.

REFERENCES
[Chil92] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday,
D. Moebus, B. Ray, M.-Y. Wong, “Orthogonal Defect
Classification - A Concept for In-Process Measurement”, IEEE
Transactions on Software Engineering, November, 1992, pp.
943-946.
[Hal77] M. H. Halstead, Elements of Software Science.
Elsevier, New York, 1977.
[IEEE83] “IEEE Standard Glossary of Software Engineering
Terminology”, IEEE Std 729-1983, Institute of Electrical and
Electronics Engineers, 1983.
[IEEE88] “IEEE Standard Dictionary of Measures to
Produce Reliable Software”, IEEE Std 982.1-1988, Institute of
Electrical and Electronics Engineers, 1989.
[IEEE93] “IEEE Standard Classification for Software
Anomalies”, IEEE Std 1044-1993, Institute of Electrical and
Electronics Engineers, 1994
[Khos90] T. M. Khoshgoftaar and J. C. Munson , "Pre-
dicting Software Development Errors Using Complexity Met-
rics," IEEE Journal on Selected Areas in Communications 8,
1990, pp. 253-261.
[Khos92] T. M. Khoshgoftaar and J. C. Munson "A
Measure of Software System Complexity and Its Relationship
to Faults," In Proceedings of the 1992 International Simulation
Technology Conference, The Society for Computer Simulation,
San Diego, CA, 1992, pp. 267-272.

[MacD97] S. G. MacDonell, M. J. Shepperd, P. J. Sallis,
“Metrics for Database Systems: An Empirical Study”,
Proceedings of the Fourth International Software Metrics
Symposium, November 5-7, 1997, Albuquerque, NM, pp. 99-
107
[Muns90] J. C. Munson and T. M. Khoshgoftaar “Regres-
sion Modeling of Software Quality: An Empirical Investiga-
tion,” Journal of Information and Software Technology, 32,
1990, pp. 105-114.
[Muns90a] J. C. Munson and T. M. Khoshgoftaar "The
Relative Software Complexity Metric: A Validation Study," In
Proceedings of the Software Engineering 1990 Conference,
Cambridge University Press, Cambridge, UK, 1990, pp. 89-
102.
[Muns92] J. C. Munson and T. M. Khoshgoftaar "The De-
tection of Fault-Prone Programs," IEEE Transactions on Soft-
ware Engineering, SE-18, No. 5, 1992, pp. 423-433.
[Muns95] J. C. Munson, "Software Measurement: Problems
and Practice," Annals of Software Engineering, J. C. Baltzer
AG, Amsterdam 1995.
[Muns96] J. C. Munson, “Software Faults, Software Failures,
and Software Reliability Modeling”, Information and Software
Technology, December, 1996.
[Muns96a] J. C. Munson and D. S. Werries, “Measuring
Software Evolution,” Proceedings of the 1996 IEEE Interna-
tional Software Metrics Symposium , IEEE Computer Society
Press, pp. 41-51.
[Muns97] J. C. Munson and G. A. Hall, “Estimating Test
Effectiveness with Dynamic Complexity Measurement,” Em-
pirical Software Engineering Journal. Feb. 1997.
[Net83] J. Neter, W. Wasserman, M. H. Kutner, Applied
Linear Regression Models, Irwin: Homewood, IL, 1983
[Niko97] A. P. Nikora, N. F. Schneidewind, J. C. Munson,
“IV&V Issues in Achieving High Reliability and Safety in
Critical Control System Software”, proceedings of the Interna-
tional Society of Science and Applied Technology conference,
March 10-12, 1997, Anaheim, CA, pp 25-30.
[Niko97a] A. P. Nikora, J. C. Munson, “Finding Fault with
Faults: A Case Study”, proceedings of the Annual Oregon
Workshop on Software Metrics, Coeur d’Alene, ID, May 11-
13, 1997
[Niko98] A. P. Nikora, “Software System Defect Content
Prediction From Development Process And Product
Characteristics”, Doctoral Dissertation, Department of
Computer Science, University of Southern California, May,
1998.
[SETL93] “User’s Guide for UX-Metric 4.0 for Ada”, SET
Laboratories, Mulino, OR, SET Laboratories, 1987-1993

